Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience
نویسندگان
چکیده
Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.
منابع مشابه
The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats
The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...
متن کاملThe comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats
The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...
متن کاملIncreased synaptic activity in magnocellular neurons of supraoptic nucleus and plasma vasopressin levels due to acute administration of morphine in male rats
Introduction: The magnocellular neurons (MCNs) of the supraoptic nucleus (SON) play a crucial role in control of physiological and pathophysiologiccal condition due to two peptides that they synthesize, i.e. Oxytocin (OXT) and Vasopressin (AVP). The activity of MCNs is regulated by a variety of excitatory and inhibitory inputs. Opioid receptors are one of the important receptors in SON synap...
متن کاملFrom elementary synaptic circuits to information processing in primary auditory cortex.
A key for understanding how information is processed in the cortex is to unravel the dauntingly complex cortical neural circuitry. Recent technical innovations, in particular the in vivo whole-cell voltage-clamp recording techniques, make it possible to directly dissect the excitatory and inhibitory inputs underlying an individual cortical neuron's processing function. This method provides an e...
متن کاملP 18: Alterations of Electrophysiological Activity of Cerebellar Pukinje Cells of Rats Under Harmaline Toxicity
Introduction: Beta-carboline alkaloids of P. harmala are shown to have immune-modulatory effects in several studies. Extracts of this plant have significant anti-inflammatory effect via the inhibition of some inflammatory mediators including PGE2 and TNF-α. In postmortem studies, structural alterations to the cerebellum have been recognized, including Purkinje cell loss being re...
متن کامل